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INTRODUCTION

We shall consider an approximation problem of the following type. An
open set seEN and a map A : S -+ H are given where H is some real inner
product space. Given f E H the approximation problem is to minimize
il A(x) - fl1 2 == [A(x) - f, A(x) - f] as x ranges over S. Moreover, we
assume that the map A is twice continuously FnSchet differentiable.

In particular we shall obtain results of the sort: "If X o E S and II A(xo) - fll
is sufficiently small thenfhas a unique (global) best approximation in A(S)."
Moreover, sufficiently small will be defined by an explicit bound, the calcula
tion of which involves X o only. As a result we will also be able to obtain a
lower bound on what might be called the radius of unicity at X o . This would
be defined to be the supremum of the set of r ~ 0 such that II A(xo) - fll < r
implies thatfhas a unique best approximation in A(S). That is, given Xo E S
such that X o is normal (defined later) it will be possible for certain types of
nonlinear families to explicitly determine 80 such that if lif - A(xoW < 80

thenfhas a unique best approximation in A(S).
Results of the first type mentioned above (under the assumption that X o is

a local best approximation) may be found in [1,2, 3]. Several numerical
examples are given in [2]. The calculation of the type of bounds given in these
papers requires, in general, the minimization of certain nonlinear functions
on S. The type of bounds given in this paper seem simpler and more explicit.

BASIC RESULTS

Let A : seEN -+ H be such that the map x -+ A" (x, " .) is continuous
on S and let f E H be arbitrary but fixed. For Xo E S let So denote the level set
{x E S :I! A(x) - A(xo)11 ~ 211 A(xo) - fll}. Finally for XES let 1f1(x) ~
([A(x) - f, (OAjOXl)(X)], ... , [A(x) - f, (oAjoxN)(x)]Y and note that since
21f1(x) is the gradient of F(x) ,=" [A(x) - f, A(x) - f] a necessary condition
that xbe a local minimum of F(x) is that 1f1(x) = O.
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Assume that X o E S is such that there exist positive constants Ko ' K1 ' and y
depending only on X o and '; A(xo) fl such that

(i) ,I A(x) -- A(xo)1

(ii) tj/(x) - tj/(xo)!

y x --- xo ! ,

K o x-- X o K, A(xo) f

for all x E So where the usual Euclidean norm is used on E'.
We shall need the following result a proof of which may be found in

[4, p. 200].

LEMMA I. Lct f: X -;> Y, )( and Y rcal Banach spaces hace a cOlli illUOIll
deril'atice for x ill some open set U. Let Xo (= U be such that (r(x-o)) I

f~l(xo) exists. For SO/11e L, 0 I. I, let I' bc such Ihat the inequalitl'

Supposc that

(ii) U~l(XO)f(xo)!' 1'( I L).

L 1101dl'.f{11' all .\ such that x x" 1'.

Then there exists a unique zero x off in B(xo ' 1') lx x Xo rj alld
the sequcnce {xn+l] dcfincd by Xli' I XI/I f'J(xo)f(xrJ conccrges 10 x ok and
satisfics' x*- XI/I (Cil/( 1- L))! XI- X o .

An examination of the proof given in [4] shows that )( may be replaced by
an open subset V of X provided that B(xo , r) C V This extended form is the
version we shall use.

THEOREM I. In thc abore setting assul!1e that Eo

(I) EO Ao/2A':, '

(2) EO ;\)4(KI KoK,).

(3) B(xo; r) {)( x Xo r} C S.

Yl,hen EoK4 r Ao/4Ko -- EoK,/Ko where K~ A"(xo ' ".) . '\0 int';, - ,
[A'(xo , h), A'(xo , h)], K 3 = [L;~J ',(cA/8xi)(xo)1 2]U and K 4 max{2/y.4K,J
Ao]·

Then there is a unique solulion x* OJ'tji(X) 0 lying in the ball B(xo: 1').

Morcover, the sequence X, I )(, -- F-J(.\'o) </1(X,,) convcrges 10 x* Il'ith
I! x" x* , 1'/2,-1 V 1,2.....

Proof We shall check that the hypotheses of Lemma I are satisfied at x"
with L= J. First note that EO (;\0/4(KI + KoK4 ) if and only if EoK,
(Ao/4Ko) - (KJ / Ko) Eo so that positive I' satisfying the inequality in (3) exists.
Inequality (0 implies that the quadratic form VI'(XO ' h. k) [A'(xo • h),

A'(xo , k)] [A(xo) f A"(xo • h. k)] is positive definite with minimum

eigenvalue at least \/2 since inC Iii ,J/(xo • h, h) ,;,,1(.\0) I'
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II A"(xo , " ')11 ~ Ao - EcJ(2 ~ Ao/2 by (1). Thus, II ¢S~l(xo)11 ~ 2/Ao and letting
L = t in Lemma 1 we have that for II x - Xo II ~ r

since r < (Ao/4Ko) - (EcJ(l/Ko) implies that r + (K1EO/Ko) < (Ao/4Ko) so that
Kor + K1Eo < Ao/4 yielding 2/Ao[Kor + K1Eo] < t = L.

since r > EoK4 ~ (4EoKa/Ao).
Hence by Lemma 1 the conclusion of the theorem is valid. I
Remark 1. The conclusion of Theorem 1 becomes trivial in case Ao = 0

for then / = A(xo) if (1) is satisfied. A point X o E S for which Ao > 0 is
usually called a normal point. The usual situation encountered is that any
solution to ¢Sex) = 0 must be normal and this is true in particular for the
rational family we consider later in this paper [3].

COROLLARY. Suppose Xo E S be such that the hypotheses 0/ Theorem 1 are
satisfied. Then each/E H in the open ball o/radius 00 about A(xo) has a unique
global best approximation in A(S) where

00 = Ao min 12~2 ' 4(K
1
~ KoK4

) I·
Proof Let / be arbitrary but fixed with II A(xo) - /11 < r where r is any

number satisfying (3) in Theorem 1. If x E So then II x - Xo II ~ (l/y)11 A(x) 
A(xo)11 ~ 2/y II A(xo) - /11 ~ EoK4 < r. Thus, So C B(xo; r) and so So is
compact. Hence F(x) == [A(x) ~- f, A(x) - f] achieves a minimum (over
So) at x* E So which is clearly also a minimum over S. Thus o/(x*) = 0 and by
Theorem I, x* is unique. Since / was arbitrary the result follows. I

Remark 2. If we assume that Xo is itself a local minimum of [A(x) 
f, A(x) -- f] then Theorem 1 in this case may be interpreted as a test for
determining whether X o is actually a global minimum. Results of this type are
considered in [1,2, 3]. The bounds on EO given in these papers require the
minimization of certain nonlinear functions over the entire set So rather than
the evaluation of quantities directly calculable in terms of X o itself. We have
no information, however, on how the bounds of this paper compare in size
to those given in [1] or [2].
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ApPLICATIONS

We now consider two applications of Theorem l to specific approximati ng
families. The first of these is a class of families discussed in [1, 3]. The second
is the family of rational functions having only real poles.

EXAMPLE I. Let T be a compact Hausdorff space and m a regular Borel
measure on T. Suppose {L'l ,... , l'r,} is an independent subset of C(T) (the
real-valued continuous functions on T) with the property that each nonzero g
in span{vl ,... , vn } is such that m{t i g(t) .~. 0] O. Let/: £l-~ £1 be thrice
differentiable and satisfy M 1'(s) 0: O,r(s)1 ,:::; p and i1'l/(s)1 C
for all s E £1 (e.g., f(s) = s +- arctan(s». Define A: E" -+ Lz(T, M) by
A(x)(t) = fCL;~l XiVi(t». Note that N(x) II L:~l Xi1'i(tW defines a norm on
En. For convenience we assume that meT) =c J.

For each t E T, h E pv, A(x- h)(t) _... A(x)(t) f(Lj (Xj hj) I'JCt»
f(Lj x;rlt» ~~ 1'(Lj (Xj I- (Jlh;) vJCt» Li h;I';(t) where 0 < (JI < I using the
mean value theorem. Thus

A(x 11) - A(x)ll= U/' (I (Xi + (J/1J l'/t)) z(I l1 i l',(t)f dmtZ ? cxfJ 11
/ /

where fJ > 0 such that II Li k,Vi(t)il ~ fJl k for all k E£'t. A similar calcula-
tion also shows that in~il,rl=l A'(xo , h)l! o:f3 h .

To estimate II f'ex) - f'(Xo)11 we first recall that for a real symmetric
matrix B, Ii B = maxllhlH I<h, Bh>1 where ',' is the usual inner product
on pv. Now,<h, f'(x) h'· <h, f'(xo) h>[ ![A(x) .- g, AI/(x, h, h)]
[A'(x, h), A'(x, h)] - [A(xo) - g, AI/(xo , h, h)] [A'(xo , h), A'(xo , h)]i where
g E Lz(T, M) is the function that is to be approximated. Applying the triangle
inequality we arrive at the inequality

Ma X

ea:; x

:'~ Ma.,

I A'(xo ,h)l, A'(x, 11) - A'(xo , h)ii

+ A'(x, h)ll i A'(x, h) - A'(xo , h)l

. AI/(x, h, h)I, Ii A(x) -- A(xoW

+ ! A(xo) ~ g! .. 1 AI/(x, h, h) - AI/(xo , h, h)l. (I)

the right-hand side of (I), let a denote the quantity
Then some elementary but tedious calculations yield for

II A'(x, h)11

\1 A'(x, h) ~ A'(xo , hY!
II AI/(x, h, h)11

ii A(x) -- A(xo) \I

i AI/(x, h, h)- AI/(xo ' h, h}!

I<h, (f'(x) - f'(xo»h)

To estimate
II L~l vj2(t)11~2.

Ilhll = 1

(i)

(ii)

(iii)

(iv)

(v)



RADIUS OF UNICITY 111

Using the above and (1) we find that in Theorem 1 we may take Ko =
a3(pM + CEO), K1 = 0, that K2 = pa2, ,.\o?: cxf3, Ka ~ Ma, y ?: cxf3, and
K4 ~ max{2/cxf3, 4Ka/cxf3} ~ l/cxf3 max{2, 4Ma}. Thus we have

THEOREM 2. In the setting above, if XoE S satisfies

(l) EO = II A(xo) - g II ~ cxf3/2pa2

and

then the conclusions of Theorem I and Corollary I hold. In particular, each g
such that II A(xo) - g II ~ EO has a unique best approximation in A(S).

We now consider a second application of Theorem I.

EXAMPLE 2. Let H = L 2 [-1, I] and .rn.m = {P/Q I pet) = ao + a1t +
... + antn, Q(t) = 1 + bIt + ... + bmtm and Q(t) > °for all t E [-1, 1] and
Q has m real roots}. Let S = {(ao ,... , an , b1 , ... , bm)1 A(x) == P(A)/Q(B) =

(ao + ... + antn)/(l + bIt + ... + bmtm) E .rn.m}. For each XES the tangent
space Tx at x is defined to be the linear span of

lIt t n tP trnp l
IQ'Q'''''Q'Q2'''''Q2\ .

The point XES is called normal if dim Tx = m + n + 1. In this case in~lhll~l

II A'(x, h)112 == "\0 :> 0 and is the smallest eigenvalue of the positive definite
matrix

([ ~~ (x), ~~ (x)]) 1 ~ i,j ~ m + n + 1.

Thus, II A'(x, h)11 ?: (,.\0)1/211 h II if x is normal.
A simple calculation shows that if x, X oE S then

where A(xo) = Po/Qo and A(x) == P/Q.

LEMMA 2. For XES the inequality II Q(B)lloo ~ 2m always obtains.

Proof For x = (A, B) E S we have that Q(B) has the form Q(B)(t) =
n:l (1 - Z/) where Zi E(-1, 1) since Q(B) does not vanish on [-1, 1] and
has only real roots. Thus I Q(B)(t)1 ~ n:1 (1 + 1Zit I) ~ n:1 2 = 2m

• I
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LEMMA 3. Suppose Xo E S is normal and let XES be such Ihat A(x)

A (xo)I1~ 2 A(xo) - I!I . Then

A(x)- A(xo) 1

80-~ inftd-1,1] I Qo(t)1 ,and x X o is the usual Euclidean norm on E'" " I

Proof By (i) and (ii) above we have that A(x) A(xo) Wo/Q) A'
(xo , x -- xo). Thus,

I A(x) - A(xo)i]2= 'IWo/Q) A'(xo ' x xo)1 2 = ( (_QQ~)-) 2 (_(lo~_Q-=TJ:'o~_)" dl
• ,. ". 0

so that

A'(xo' x
80

2Ao
2m

To apply Theorem I It IS again necessary to estimate \h, (lj;'(x)
if/(xo») h>1 when Ii h I. A simple calculation using the triangle inequality
yields

A'(x, h) ~ A'(xo , h)i{2 A'(xo ' h)

A'(x, h) - A'(xo , h)l} + A(x) _. A(xo)

{ A"(xo , " ')11 -1- A"(x, h, h)

A"(xo , h, hy!} + ! A(xo) - I
A"(x, h, h) -- A"(xo , h, hY! (')

where IE L2[ --I, I] is the function to be approximated. The calculations
needed to estimate the right-hand side of (*) are even more tedious than in
Example I but are still quite straightforward. We will consider in detail the
estimations of: A'(x, h) A'(xo, h)1 since the technique in the other cases is
essentially the same.

AsinLemmas2and31et80 inL1<t-1Qo(t)andAo • in~lhH A'(:r",h),2.
Also let A, A'(xo , )1 2 sUP,lII~l A'(xo , h)1 2

, u,u." -.= max{l1l, n I:.
and EO A (xo) II. Finally let PI and Ql denote the polynomials 2.:;'~0 h,t'
and 2.:;:1 h j ,,/j, respectively, where h= (ho ,... , hn , hnn , ... , h", II) is arbitrary
but fixed with 1 h I' ~•. I.

Now

A'(x, h)- A'(xo ' h)

P1(Q Q,,)
---------- -

QQ"
QIW i Q,,) \ PoW

. ------

Q2 I
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so that

II A'(x, h) - A'(xo , h)11

~ II Q~o t II P1(Q - Qo)11 + II QQ: ~:II II Q1A '(xo , x - xo)11 .

To estimate the above, note that

Q = Qo (1 - Qo - Q )
Qo

so that

Assume that

Then

QoQ(t) :::? Q02(t)( 1 - 1\ Q ~oQo ILn )

(
m1/211 x - Xo II ) :> 82 (1 _ m1/211 x - Xo Ii ):::? Q02(t) 1 - 0

0
/ 0 0

0

113

since (Q - Q )(t) =,,~ (b, - b(O» Ii 0< ("m 12i)1/2 ("m (b, _ b(Ol)2)1/2 0<o ~t.=1 t t -.....:::: ~t=l "'-1.=1 t t --:::.:

m1 / 2 1\ x - X o II , But

by Lemma 3 so that

by our assumption about Eo • Thus

II Q1Q II ~. f Q~) Q ( ) ~ ~22 •It. 0 co III 181 tot Vo

A similar calculation yields II 1/Q2 11oo ~ 4/80
2 and using Lemma 2 and the

triangle inequality we get

II !l + Qo Ii 2
m

+a
I Q2 I'';;; ':' 2 .

. ,100 00
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Proceeding to the other terms we have

PI(Q Qo)f

JlI ( t/Ji)" (Q - Qo)(t)2 cit ( ( t/l/)(~) t 2i )(Q - Qof (t) cI(

(2i1)( 1

b;OJ)2 ( I t 2j
) cI(

,,=-cot i

(2111I-1)) cit

.[

.\ --- .Yo (2 I (2( I
'·1

{2

and so PICQ ~- Qo)1 2 a'iI,,,(2j3)U - X xo .
calculation gives the estimate II QI . A '(xo , x- x o),!
combining all these we have that

I A'(x, h) A'(xo , h)

Again a very similar
(mA I )l!2 x X o and

In an analogous way the other terms in C*) may be estimated. The result of
these calculations is contained in the following lemma.

LEMMA 4. Let Xo E S be normal, 80 infl I Qo(t) 0, -\, inf iiI

A'(xo , h)112, Al A'(xo , -)i 2. ail,,11 max{m.l1 I], K 2 = A"(xo .·, ·r,
y .~ (ooCAo)l/2j2m), and EO A(xo)' f" . Define constants C1 • C['. C2 • C/
by

2(2/3)1/2 a m . n
----~--

')," 5m (/\I)1 2
-~2

and

Then for any x E So we have that if/(x)- if/(xo)
provided that

This leads immediately to the following result.
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THEOREM 3. In the setting of Lemma 4, let N = m + n + I, Ko =
C1 ' + Cz',

Ks = C~l II :: (xJ liT1

2

,

K4 = max{2/y, 4Ks/Ao}, and do = dist(xo ,SC). Then if

f has a unique best approximation in .rn .", and the parameter x* of the best
approximation lies in the ball B(xo; r) where r = min{do ,Ao/4Ko}' We assume
here that f ¢: .rn .m .

Proof The proof follows immediately from Theorem 1 once we note that

implies that the conclusions of Lemma 4 are valid and EO <: do/2K4 implies
that K4Eo < do so that hypothesis (3) of Theorem 1 is satisfied. Thus
Theorem 1 applies and we are done. I

Remark 3. It is interesting to note the role of the parameter m in the
above estimates. As m increases (that is, as the number of nonlinear para
meters increases) the bounds decrease. This indicates that as the family .r,.,m
becomes more nonlinear the more "wavy" it is likely to be so that non
uniqueness is more likely close to the approximating family. We conjecture
that as m ->- 00 (with n fixed or not) the least upper bound of the radius of
unicity at A(x) as x ranges over S will tend to zero.
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